Extensions 1→N→G→Q→1 with N=C22 and Q=C9⋊Dic3

Direct product G=N×Q with N=C22 and Q=C9⋊Dic3
dρLabelID
C22×C9⋊Dic3432C2^2xC9:Dic3432,396

Semidirect products G=N:Q with N=C22 and Q=C9⋊Dic3
extensionφ:Q→Aut NdρLabelID
C221(C9⋊Dic3) = A4⋊Dic9φ: C9⋊Dic3/C18S3 ⊆ Aut C221086-C2^2:1(C9:Dic3)432,254
C222(C9⋊Dic3) = C62.10Dic3φ: C9⋊Dic3/C3×C6S3 ⊆ Aut C22108C2^2:2(C9:Dic3)432,259
C223(C9⋊Dic3) = C62.127D6φ: C9⋊Dic3/C3×C18C2 ⊆ Aut C22216C2^2:3(C9:Dic3)432,198

Non-split extensions G=N.Q with N=C22 and Q=C9⋊Dic3
extensionφ:Q→Aut NdρLabelID
C22.(C9⋊Dic3) = C36.69D6φ: C9⋊Dic3/C3×C18C2 ⊆ Aut C22216C2^2.(C9:Dic3)432,179
C22.2(C9⋊Dic3) = C2×C36.S3central extension (φ=1)432C2^2.2(C9:Dic3)432,178

׿
×
𝔽